Phase Three
Three Stage Smart Charger
Installation/Operation manual
Models: PT-24-20W & PT-40W

TABLE OF CONTENTS
Section Topic .. Page
QUICK REFERENCE DRAWING ... 2
I) GENERAL INFORMATION ... 3
II) IMPORTANT SAFETY INFORMATION 3
III) INSTALLATION .. 4
 A) Materials Provided ... 4
 B) Location .. 4
 C) Mounting .. 5
 D) DC Output Wiring ... 5
 E) Multiple Unit Parallel Wiring 7
 F) AC Input Wiring ... 7
IV) OPERATION .. 8
 A) Three Stage Charge Regimen 8
 B) Time-Out Circuit ... 8
 C) Gel-Cell/Lead-Acid Selector Switch 9
 D) Remote Panel Option .. 9
 E) Temperature Compensation Option 9
 F) Equalize Timing Option 10
 G) Cooling Fans ... 11
 H) Output Ammeter ... 12
 I) Power-On Indicator .. 12
V) APPLICATION NOTES ... 12
 A) Start UP .. 12
 B) Constant Versus Occasional Use 12
 C) Proper Load Sizing 12
 D) Operation with Engine 12
 E) Operation as a DC Power Supply 12
 (stand-alone DC power source) 12
VI) TROUBLESHOOTING ... 13
VII) SPECIFICATIONS ... 14
VIII) BATTERY CARE TIPS ... 14
IX) REFERENCE APPENDIX 15
X) UNIT DIMENSION DRAWING 16
Quick Reference Drawing

- Optional Dripshield
 - Pg. 4

- Permanent Mounting Holes X4
 - Pg. 5

- Temporary Keyhole Mounting Holes X2
 - Pg. 5

- Charger Front Cover

- Ammeter
 - Pg. 12

- Charger Status LED
 - Pg. 12

- AC Input Fuse
 - Pg. 7

- AC Input
 - Pg. 7

- Output Terminals
 - Pg. 5

- 1/4 - 20 Chassis Grounding Stud
 - Pg. 4
I) GENERAL INFORMATION

Your Phase Three™ Series Battery Charger represents a new phase in charger design and performance, employing “smart” switching circuitry which puts batteries through the optimum three-stage charge process, adapts for gel-cell or lead-acid batteries, features precise voltage compensation for varying battery temperature, is rated for continuous duty and is housed in rugged stainless steel cover coated with a durable white powder coat finish.

Following is a brief listing of some of the more important features/options of your Phase Three Charger. Each is fully detailed later in this manual:

• Three step ‘smart’ charging: bulk, absorption, float
• Gel-cell/lead-acid switch selects optimum charge/float voltages based on battery type
• Multiple output banks charge independently based on demand
• 115/230 VAC, 50-60 Hz input – can be used anywhere in the world
• Current limited – prevents damage in case of overloading
• Thermally controlled cooling fan allows continuous operation at full-rated output
• High charge voltage time-out circuit prevents overcharging during continuous high amperage demand
• Automatic high temperature power reduction – allows charger output in over-temp conditions at reduced output current without complete shutdown
• Optional temperature compensation sensor fine tunes output voltage based on battery temperature
• Optional Remote Panel allows remote monitoring of charger phase status and manual re-initialization of charge cycle
• Internal terminals allow installation of optional equalize timer connection
• Use as a power supply without in-line battery: allows continued use of DC powered electronics (when AC is available) in the event that batteries must be taken off-line or removed
• Built to last - rugged stainless steel and aluminum case powder coated case with marinized internal circuitry; optional-use dripshield provided

II) Important Safety Instructions

1. SAVE THESE INSTRUCTIONS – This manual contains important safety and operating instructions for the Phase Three Battery Charger.

2. Before using this battery charger, read all instructions and cautionary markings on (1) the battery charger, (2) the battery, and (3) product powered by the battery.

3. CAUTION – To reduce the risk of injury, charge only 6 cell (12 volt models) or 12 cell (24 volt models) gel-cell or lead-acid rechargeable batteries. Other types of batteries may burst, causing personal injury and damage.

4. Do not expose charger to rain or spray.

5. Use of an attachment not recommended or sold by NEWMAR may result in a risk of fire, electric shock or injury to persons.

6. To reduce the risk of damage to the electric plug and cord (if plugged into an AC outlet), pull by plug rather than cord when disconnecting the charger.

7. Make sure the cord is located so that it will not be stepped on, tripped over, or otherwise subjected to damage or stress.

8. An extension cord should not be used unless absolutely necessary. Use of an improper cord could result in the risk of fire and electric shock. If an extension cord must be used, make sure:

A) That pins on the plug of the extension cord are the same number, size and shape as those on the plug of the charger.

B) That the extension cord is properly wired and in good electrical condition.

C) That the wire size is large enough for the AC amperage rating of the Phase Three Charger. Refer to the SPECIFICATIONS SECTION to determine the full load input current of your Phase Three Charger, and then use the chart below to determine the correct gauge wire for any extension cord used.

| RECOMMENDED MINIMUM AWG SIZE FOR EXTENSION CORDS FOR PHASE THREE BATTERY CHARGER |
|---|---------------------|------------------|
| AC Input Rating, Amperes | Length of Cord, Feet |
| Equal to or greater than | but less than |
| 25 | 50 | 100 | 150 |
| Size of Cord (AWG) |
4	6	16	16	14	12
6	8	16	16	12	10
8	10	16	14	12	10

9. Do not operate the charger with a damaged cord or plug; replace them immediately.

In addition, your Phase Three Charger carries a full two year warranty against defects in materials or workmanship from the date of purchase. Careful attention to these instructions should help you enjoy years of trouble-free service.

PRODUCT REGISTRATION

If you wish to register your Newmar charger with us and provide comments or questions, please visit us online at www.newmarpower.com/product_registration.html or for immediate response to your questions or comments, please call tech service at 1-800-241-3897 or email techservice@newmarpower.com.
10. Do not operate the charger if it has received a sharp blow, been dropped, or otherwise damaged; take to a qualified serviceman.
11. Do not disassemble the charger; take it to a qualified serviceman when service or repair is necessary. Incorrect reassembly may result in a risk of electric shock and fire.
12. To reduce the risk of electric shock, disconnect the charger from AC source before attempting any maintenance or cleaning.

WARNING—RISK OF EXPLOSIVE GASES

1. WORKING IN THE VICINITY OF A LEAD-ACID BATTERY IS DANGEROUS. BATTERIES GENERATE EXPLOSIVE GASES DURING NORMAL BATTERY OPERATION. FOR THIS REASON, IT IS OF THE UTMOST IMPORTANCE THAT BEFORE INSTALLING AND USING YOUR CHARGER, YOU READ THIS MANUAL AND FOLLOW THE INSTRUCTIONS EXACTLY.

2. To reduce the risk of battery explosion, follow these instructions and those published by the battery manufacturer and by the manufacturer of any equipment you intend to use in the vicinity of the battery. Review cautionary markings on these products and on the engine.

PERSONAL PRECAUTIONS

1. Someone should be within range of your voice or close enough to come to your aid when you work near a lead-acid battery.

2. Have plenty of fresh water and soap nearby in case battery acid contacts skin, clothing, or eyes.

3. Wear complete eye and clothing protection. Avoid touching your eyes while working near a battery.

4. If battery acid contacts skin or clothing, wash immediately with soap and water. If battery acid enters the eye, immediately flood eye with running cold water for at least 10 minutes and get medical attention immediately.

5. NEVER smoke or allow a spark or flame in the vicinity of the battery or engine.

6. Be extra cautious to reduce the risk of dropping a metal tool onto the battery. It might spark or short-circuit the battery or other electrical part and cause an explosion.

7. Remove personal metal items such as rings, bracelets, necklaces, and watches when working with a lead-acid battery. A lead-acid battery can produce a short-circuit high enough to weld a ring or the like metal, causing a severe burn.

8. Use the battery charger for charging gel-cell or flooded lead-acid batteries only. It is not intended to supply power to a low voltage electrical system other than in a starter-motor application. Do not use the charger for charging dry-cell batteries that are commonly used with home applications. These batteries may burst and cause injury to persons and damage to property.

9. NEVER charge a frozen battery.

PREPARING TO CHARGE

1. Be sure the area around the battery is well ventilated.

2. Clean battery terminals. Be careful to keep corrosion from coming in contact with eyes.

3. Add distilled water in each cell until battery acid reaches level specified by battery manufacturer. This helps purge excessive gas from cells. Do not overfill. For a battery without cell caps, carefully follow manufacturer's recharging instructions.

4. Study all battery manufacturers' specific precautions such as removing or not removing cell caps while charging and recommended rates of charge.

GROUNDING AND A.C. POWER CORD CONNECTION

1. The charger should be grounded to reduce risk of electrical shock.

2. The Phase Three Charger is provided with IEC certified AC power cord. If, for any reason, the plug on the cord must be changed or replaced, observe color coding of the AC wiring as follows:

 Brown ... AC
 Hot (fused) ...
 Blue ..
 Neutral ..
 Green ..
 Ground (safety/earth)

The charger must be plugged into an outlet that is properly installed and grounded in accordance with all local codes and ordinances.

DANGER: Never alter the AC cord or plug provided, unless it is absolutely necessary for use with the AC outlet which conforms to all relevant electrical codes. Any modification of the cord must only be done by a qualified electrician. Improper cord/outlet connection can result in a risk of electrical shock.

EXTERNAL CONNECTIONS TO THE CHARGER SHALL COMPLY WITH UL RECOMMENDATIONS AND/OR UNITED STATES COAST GUARD ELECTRICAL REGULATIONS (33CFR183, WSUB-PART I)

THE INSTALLATION AND PROTECTION OF VESSEL WIRING ASSOCIATED WITH BATTERY CHARGERS SHALL COMPLY WITH ABYC STANDARDS E-11) AC & DC ELECTRICAL SYSTEMS ON BOATS, AND A-31) BATTERY CHARGERS & INVERTERS.

III) INSTALLATION

A) Materials Provided

The Phase Three charger is provided completely assembled and ready for installation. Because of numerous installation variables, the installer will need to provide four suitable _ mounting screws/washers, as well as DC output wiring and connectors. Proper sizes and gauges for the wire and connectors are noted in section III-D following.

B) Location

The charger should be mounted on a wall, bulkhead or other suitable mounting surfaces as close to the batteries to be charged as possible. Do not mount the charger directly over the batteries as fumes may cause excessive corrosion. The area should be well ventilated and free from excessive moisture, exhaust manifolds, and battery fumes.
Vertical mounting is preferred in order to allow the dripshield to protect the charger from any moisture which may fall onto the charger. However, vertical mounting is acceptable since the charger is forced-air cooled. It should not be located where there is a possibility of debris being drawn into the unit through the fans.

If the charger is located in an extreme heat area, such as an unventilated engine room, and the cooling fans are unable to maintain proper operating temperature, output power will automatically be reduced to protect the charger. For maximum performance, the charger should not be located in an area of extreme high temperature.

IMPORTANT: Although the charger is constructed of materials and in a manner which make it highly resistive to the corrosive effects of moisture in the environment, the charger is not waterproof. Do not mount the charger where there is a possibility of water entering the unit. Evidence of water entry into the charger will void the warranty.

C) Mounting

The charger may be mounted on either a metal or non-metal surface*. You will require four screws (wood or machine screws, depending on mounting surface) with washers, sized for _" holes, to mount the charger, plus two temporary holding screws. Note that, in addition to the four permanent mounting holes in the flanges, there is a hole in each mounting flange which is "keyhole" shaped. This is provided to ease vertical installation.

* To comply with ABYC DC chassis grounding conductor (ABYC A-20), connect a suitable sized wire to the _"-20 chassis grounding stud near AC cable feed through.

Make a mark on the wall or bulkhead where each of the keyhole slots will be located. Then drive a screw about half-way in at each of these marks. Hang the charger onto the bulkhead using the "keyhole" slots. Doing this will save you from having to support the charger's weight while you are driving in the four permanent mounting screws. **Note:** The "keyhole" slots may be used for additional support screws but they are not to be used as permanent mounting points, by themselves.

D) D.C. Output Wiring

Note: Only qualified service personnel should access the output terminals of the charger.

Whether working with existing battery charger output wires or installing new ones, make sure the battery(s) is disconnected from these wires before connecting them to the charger's output terminals.

For a secure installation D.C. output wires must be attached with 1/4" crimp ring lug terminals sized appropriately to fit wire gauges as listed below.

The D.C. wire size table below may be used to determine the correct gauge wire, based on the model you have and the length of the wire run from the charger to the batteries. Once the output wiring has been attached to the chargers output posts, install the clear plastic terminal cover provided with the charger.

FIGURE 1:
Simple D.C. Wiring (Preferred Method)

* Per ABYC A-31: A D.C. chassis grounding conductor shall be connected from the case of the battery charger to the engine negative terminal or its bus, and must not be more than one size under that required for the D.C. current carrying conductor and not less than 16 AWG.

Note: This diagram does not illustrate a complete system. Refer to ABYC standards E-11 AC & DC electrical system on boats

Important: Install fuses at batteries per ABYC recommendations
Note: If batteries are closer to charger than battery switch, wire directly to battery posts.

It is recommended that DC wiring from the charger to the batteries be as direct as possible. Line voltage loss and electronic noise interference of sensitive electronics are possible if the charging leads are routed through a central electrical distribution panel. Any elaborate configurations are best left to a qualified electrician.

ENSURE THAT LEADS ARE PROPERLY FUSED AT THE BATTERY. (REFER TO ABYC RECOMMENDATIONS. SEE REFERENCE APPENDIX AT THE END OF THIS MANUAL FOR ABYC CONTACT INFORMATION.)

Ensure that your connections are tight and that correct polarity is carefully observed at all times. The battery posts should be free of any rust or corrosion.

IMPORTANT NOTE: EVEN MOMENTARY REVERSE POLARITY CONNECTION MAY SEVERELY DAMAGE YOUR CHARGER. THE POSITIVE (+) TERMINAL MUST BE WIRED TO THE POSITIVE POST OF THE BATTERY AND THE NEGATIVE OR COMMON (-) TERMINAL TO THE NEGATIVE POST OF THE BATTERY OR COMMON BUS.

CAUTION: Do not attempt to increase battery bank capacity by splitting the output of one of the banks with a diode-type battery isolator. Undercharging may occur on the output bank, as a result. If you wish to add another isolated battery bank, use of NEWMAR’s Battery Integrator is recommended. Contact the factory for details. Be sure to replace the clear plastic terminal cover to prevent accidental shorting of the output terminals in the future.

An Important Note about the DC Output Fuse(s): internal DC wiring is protected by the internal DC output fuse(s). The current limiting circuit of the Phase Three Charger should prevent these fuses from blowing under normal operating conditions. If the DC fuse(s) blow, this may indicate a reverse polarity hook-up or an internal short.

Always disconnect AC to the charger before checking fuses. To check or replace the DC fuse, the cover must be removed. To do this requires removal of four screws from the front of the unit and three screws on each side. The DC fuse is mounted on the main circuit board. Be sure to replace with the same type and value as indicated on the fuse.

If the battery was connected to the charger backwards, the fuse should blow to protect DC wiring, however damage to internal components may also have occurred. If the replacement fuse blows, return the charger to an electronics service professional or to the factory for a thorough check.

* Per ABYC A-31: A D.C. chassis grounding conductor shall be connected from the case of the battery charger to the engine negative terminal or its bus, and must not be more than one size under that required for the D.C. current carrying conductor and not less than 16 AWG.

Note: This diagram does not illustrate a complete system. Refer to ABYC standards E-11 AC & DC electrical system on boats

Important: Install fuses at batteries per ABYC recommendations
inspection. Note: The internal fuses do not provide protection if there is a short in the wiring between the charger and the battery. The battery itself is a power source and charging leads should be fused at the battery per ABYC standards.

E) Multiple Unit Parallel Wiring
If increased power or system redundancy is required, a second charger may be wired in parallel. The unit is diode protected so it will not be damaged by feedback from the second unit and current limiting will prevent overloading in the case of a failure of one of the units.

Observe the following guidelines when wiring a parallel unit:
1) Use another identical charger model. Do not use a different charger model, either from NEWMAR or from another manufacturer.
2) Wire length and gauge and wire lug size must be identical for each charger to ensure proper load sharing.
3) Wire gauge for each charger must be the same as if a single charger were wired into the system itself.

F) AC Input Wiring

NOTE: (For marine applications) THE INSTALLATION AND PROTECTION OF VESSEL WIRING ASSOCIATED WITH BATTERY CHARGERS SHALL COMPLY WITH ABYC STANDARDS E-11) AC & DC ELECTRICAL SYSTEMS ON BOATS, AND A-31) BATTERY CHARGERS & INVERTERS

These models are provided with an IEC certified AC cord which may be plugged into the charger and a proper outlet. If the plug is not suited to the available outlet, 1) obtain an IEC cord with appropriate plug or 2) obtain the correct plug for the outlet and install it on the provided IEC cord. When installing the plug, pay careful attention to the pin wiring as follows:

Brown..AC Hot (fused)
Blue..AC Neutral
Green (or Green with Yellow Stripe)…AC Ground (safety/earth)

As shipped from the factory, the charger is set up for 230 VAC input. For 115 VAC applications, you must:
1) Slide the recessed 115/230 input select switch located on the left hand side of the charger to the proper position. Positions are identified on the front of the charger.
2) Replace the input fuse as explained in section
3) Input Fuse Replacement. The correct fuse for 115V applications is the ABC-12 and it is attached to the hang tag on the BATT. 1 terminal of the charger. If it is missing, see the INPUT/OUTPUT FUSE VALUE table in the SPECIFICATIONS sections of this manual to determine the correct fuse value. Warning: Do not replace the gray slotted cap of the fuse holder without a fuse installed. It will not be retrievable. If this occurs, contact factory.

A power cord cable clamp has been provided to prevent accidental disconnect of the AC cord. After the plug has been inserted into the charger, snap the pre-formed clamp around the AC input cable as close to the insertion point as practicable and use a screw to fasten the clamp tightly to the wall or bulkhead on which the charger is mounted.

Hard-wiring AC Input
If desired, the AC input to your charger may be hard-wired directly to the AC distribution panel. Install the charger end of the provided input cord as described above, then cut off the plug and splice onto three conductor marine-grade cable with crimp but connectors, observing color codes and fuse/circuit breaker ratings as above. For all models, use minimum 16 AWG cable.

All charger wiring should be made in accordance with UL, U.S. Coast Guard and/or ABYC regulations and recommendations, as well as all relevant local codes. See REFERENCE APPENDIX for sources.

AC input for the charger must be plugged into an appropriate, over-current protected three prong outlet OR routed through a separate dedicated fuse or circuit breaker on an AC distribution panel with proper safety/earth chassis ground in accordance with all local codes and ordinances.

CAUTION (230 VAC applications only): If AC input is derived from a source consisting of two HOT leads (phase-to-phase 230 VAC input voltage), an external fuse or circuit breaker must be used to protect the unfused (formerly NEUTRAL, now HOT) lead.

3) Input Fuse Replacement
The AC input of your charger is protected by an input fuse. The input fuse holder is located near the bottom of the unit on the left side. The proper value for the input fuse is indicated on the lower left corner of the front panel (230V, ABC-6A FB; 115V, ABC-12A FB). If the input fuse needs replacing, it must be replaced with the proper type and value. Use standard or fast-blow fuses. Never use a slow-blow fuse.

Caution: Ensure that AC power to the charger has been disconnected before attempting to open the fuse holder. To remove the fuse for replacement, insert a flat tip screwdriver into the fuse holder cover and turn it clockwise until it locks into position (about quarter turn). Warning: Do not replace the gray slotted cap of the fuse holder without a fuse installed. It will not be retrievable. If this occurs, contact factory.

All charger wiring should be made in accordance with UL, U.S. Coast Guard and/or ABYC regulations and recommendations, as well as all relevant local codes. See section IX) REFERENCE APPENDIX for sources.
III) OPERATION

A) Three Stage Charge Regimen

The Phase Three Battery Charger features the three stage charge regimen which is widely recommended by battery manufacturers for allowing the fastest possible recharge time without loss of batteries’ electrolyte (gel or liquid) which may be caused by sustained charging at higher voltages.

This three stage regimen is initiated each time AC is first applied, when drained batteries are most likely to be encountered. (This also occurs when the reinitialize button on the optional Remote Panel is activated – see section IV-D – Remote Panel Option). The regimen proceeds as follows:

1) Bulk Charge – When batteries are significantly discharged the charger responds initially by delivering a high amount of DC current, at or near the charger’s maximum rated output, in order to rapidly replenish them. It is during this stage that charging current is maintained at a high level as battery voltage increases. Bulk charging continues until battery voltage reaches the “charge” voltage level (where batteries are at about 75-80% of capacity). A current limit circuit prevents charger overload during this maximum output stage.

2) Absorption Charge – During this second stage of the charge cycle, battery voltage is maintained at the “charge” voltage level. Output current begins to taper off as the battery plates become saturated. Charge voltage is maintained until the current sensing circuit detects that output current has tapered to about 5-15% of charger rating. At this point, the batteries are at about 95% of full charge and the Phase Three charger switches to the third and final stage of the charge cycle.

*Note: The absorption phase may also be ended by the time-out circuit. See section B following for a complete explanation of the purpose and functioning of the time-out circuit.

3) Float Charge – For extended battery life, the Phase Three then automatically switches to a lower float voltage level. This float charge keeps batteries at peak condition without attention (though periodic checks of electrolyte level in flooded batteries is recommended.) FIGURE 3: Typical Charger Output Graph (into battery without load)

FIGURE 3: Typical Charger Output Graph

(into battery without load)

B) Time-Out Circuit

Batteries have a tendency to lose their electrolyte and may be damaged if they are maintained for long periods of time in the elevated voltage of the absorption phase. Therefore, the Phase Three Charger employs a special time-out circuit. This circuit is initialized each time AC is first applied to the charger (or when the re-initialize button on the optional remote panel is activated) and runs for a pre-set interval before forcing the charger to go into the float (lower voltage) mode. The functioning of the charger during this interval is as follows:

If the current demand of the batteries/load falls below 5-15 percent of the charger’s output capacity prior to the circuit timing-out, the charger will automatically switch to the float mode. (For instance, with model PT-40W, the charger will drop into float mode at about 2-6 amps output.) If demand rises to about 10-20 percent of capacity (4-8 amps with PT-40W, for instance), the charger will return to the elevated output of the absorption phase. This switching back and forth between modes may occur until the circuit times-out (8-10 hours after AC is first applied), after which the charger will remain at float voltage, until the circuit is re-initialized, either by turning the charger off and then on again or by pressing the re-initialize button on the remote panel.

Note: The Phase Three Charger is able to deliver its full rated output current while in float mode.

Installation Note: The time-out circuit of the Phase Three Charger has been set at about 8-10 hours, which is appropriate for battery systems within the capacity range specified on the front of the panel of the charger. If the charger is used with a battery system with a capacity near (or outside) the upper or lower ranges of the specified range of the charger, adjustment of the time-out circuit may be recommended. If the installer wishes to make this adjustment at the time of installation, the procedure is as follows (Caution: Ensure AC input has been disconnected before proceeding):

1) Remove the four screws on the front of the panel and two screws on each side of the unit.

2) Remove the front cover and locate the potentiometer on the small “charger function” plug-in printed circuit board which is labeled “TIMER ADJ.”

3) Using a small flat tip screwdriver, turn the potentiometer clockwise to increase the amount of time the charger remains in the absorption mode before timing out, or counter clockwise to decrease the amount of time. The approximate ranges are illustrated below.

FIGURE 4: Adjusting the Time-out Circuit

Note: Once the time-out circuit has put the charger into float mode, the charger will remain in this mode. Since the Phase Three Charger is well regulated, it is able to deliver its full rated output current in this mode and battery discharge will not occur (provided load current does not exceed charger rating and output wiring is properly sized).
C) Gel-Cell / Lead Acid Selector Switch

According to most battery manufacturers, the ideal charging regimen for gel-cell and wet or flooded lead acid batteries differs somewhat.

The gelified electrolyte in a sealed battery may be lost or damaged by high voltage and, once lost, cannot be replaced as it can with a wet lead acid battery. Manufacturers of gel-cells usually recommend an ideal charge voltage which is slightly lower for a gel-cell than a lead acid battery.

However, when the charger is in the float voltage mode over lengthier periods of time, gelified electrolyte in a sealed battery is not susceptible to evaporation, as is the non-immobilized electrolyte of a wet lead acid battery. This evaporation can be accelerated by the applied voltage. Consequently, the ideal float voltage is slightly higher for a gel-cell than a lead acid battery.

The ideal charge/float regimen has been programmed into the Phase Three Charger for either sealed gel-cell or flooded lead acid batteries. Simply make the proper selection for your battery type via the slide switch on the right side of the charger. The switch positions are indicated on the front panel (for Gel-Cell batteries, and down for Lead-Acid/AGM type batteries). Use a ball point pen or similar object to slide it into the correct position. The charger is shipped from the factory set for Lead-Acid/AGM batteries.

Note: A wide variety of batteries are available which do not conform to conventional descriptions as “gel-cell” or “lead-acid.” You are advised to consult the manufacturer of your particular battery as to proper charging regimen, and use the battery type selection switch setting which most closely conforms to the recommended voltages.

See the SPECIFICATIONS section for the actual preset charge and float voltages for each battery type/charger model.

D) Remote Monitor Panel Option

A Remote Monitor Panel is available from NEWMAR (model RP) which will enable you to monitor the charger’s status at-a-glance from a remote location. Red and green L.E.D.’s indicate whether the charger is in the bulk, absorption or float phase of the charge cycle. In addition, the panel features a re-initialize button, which, when pressed, will cause the charger to restart the three phase cycle. This resets the time-out circuit (see section B, Time-Out Circuit, above). Note: The charger may not stay in the bulk or absorption mode after pressing the re-initialize button. If batteries are at or near full charge, the charger will quickly revert to the float mode.

The panel comes pre-wired with 30’ of cable and 4 mounting screws. Simply install the panel at the desired location and insert the plug on the end of the cable into the remote panel jack which is located on the right side of the charger. (See FIGURE 5) The remote panel jack is identified on the front panel. Note: Inadvertently putting the remote panel plug into the temp compensation jack (or vice versa) will not harm the charger. If additional cable length is required, additional cable is commonly available from most electronics supply retailers such as Radio Shack/Tandy. Request a 6 conductor modular-to-modular line cord (part number 279-422, 25 feet long) and a 6 pin modular in-line non-reversing coupler (part number 279-423).

E) Temperature Compensation Option

Because low battery temperature increases resistance to charging and high battery temperature reduces impedance, requiring a lower charge voltage, the ideal charging voltage will vary depending on the temperature of the battery’s environment when it is being charged.

If a charger has a fixed output voltage which is ideal at, say 72_ F that same output may cause a battery charged in consistently high temperature environment to be overcharged, resulting in excessive loss of electrolyte. Conversely, if the batteries are in a consistently cool environment, they may be chronically undercharged, resulting in sulfation of the battery plates. Either of these two conditions will shorten battery life.

Therefore, the Phase Three Charger is designed to utilize an optional remote sensor (available from NEWMAR, model TCS-12/40) which provides automatic temperature compensation. The remote sensor will signal the charger to fine tune its output voltage so that it is properly matched to the temperature of the battery/battery environment. The adjustment rate is approximately -3mV per cell per C. (Note: The temperature compensation option is strongly recommended for sealed, valve-regulated or gel-cell batteries.)

The remote sensor is provided with 30’ of cable (model TCS-12/24-40 is provided with 40’ of cable). One end of the cable is plugged into the temperature compensation jack which is located on the right side of the charger. (See FIGURE 5.) The temp sensor jack is identified on the front panel. If additional cable length is required, additional cable is commonly available from most electronics supply retailers as Radio Shack/Tandy. Request a 6 conductor modular-to-modular line cord (part number 279-422, 25 feet long) and 6 pin modular in-line non-reversing coupler (279-423).

The sensor itself should be mounted on the inside of the battery box, or more ideally, mounted onto one of the batteries using a clamp or a small amount of silicon-type adhesive. The sensor has a hole in the center which will accommodate a #6 screw. If you have access to the exterior of a wall of the battery box, you may drill a hole in the wall of the box and run the screw through to mount the sensor onto the interior wall. Use caution when drilling so that you do not accidentally puncture the case of any battery inside the box.

Important note: When wiring multiple units in parallel (see section III-E) and using the temperature compensation option, you must use a separate sensor for each charger, and the sensors must be mounted close together in the same battery box or on the same battery for proper operation.
FIGURE 5: Temperature Compensation Sensor and Remote Panel Installation

To give some idea of the effect of the temperature compensation sensor, the chart on the following pages list the charge/float output voltages of the charger when no sensor is installed (or when batteries are at 72°F), and at cold (50°F) or hot (90°F) battery temperature with temp sensor installed:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>°C</td>
<td>Gel-Cell</td>
<td>Lead Acid</td>
<td>Gel-Cell</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>14.4</td>
<td>14.6</td>
<td>14.0</td>
</tr>
<tr>
<td>72</td>
<td>22.2</td>
<td>14.0*</td>
<td>14.2*</td>
<td>13.6*</td>
</tr>
<tr>
<td>90</td>
<td>32.2</td>
<td>13.7</td>
<td>13.9</td>
<td>13.3</td>
</tr>
</tbody>
</table>

* Factory pre-set voltages without temperature compensation option installed

F) Equalize Timing Option

The equalization circuit of the Phase Three Charger boosts output voltage to approximately 8% above float voltage. Refer to the battery manufacturer’s instructions when deciding the appropriate time period setting for this voltage to achieve proper equalization, while ensuring batteries are not damaged by increased battery temperature. This installation should only be performed by a qualified technician.

Installing the timer requires a mating connector with dual wires which are plugged into a jack on the internal charger function circuit board. The connector/wire assembly is available from NEWMAR. Request part number 873-3716-0, CFB Equalize 2 pin assembly. Proceed with the installation as follows:

(Caution: Ensure AC input has been disconnected before proceeding.)

1) Remove the charging leads (if already attached)
2) Remove the charger cover assembly (as previously described)
3) Locate the two-pin header labeled “J2” just over the cut-out on the top of the vertically oriented charger function circuit board. Insert the mating connector and route the two-control wires through one of the air vents on the bottom of the charger beside the “COMM” terminal. Connect the wires to the timer.
4) Replace the cover assembly. Reconnect the charging leads and AC input.

Note: The equalization process is not recommended for sealed valve-regulated or gel-cell batteries.

The equalize terminals (located inside the PT charger) should be wired through a manual or electric timer which provides a closed contact when engaged and an open circuit when timed out (SPST – Single Pole Single Throw). Do not use a manually operated switch for the equalize timer. This is because unless the charger is reverted to a safe float voltage in a timely manner, the batteries will almost certainly be damaged or destroyed. The timer should be a 0-12 hour type, capable of carrying a minimum of 100 mA at 5 VDC. CAUTION: Do not install the timer in an area requiring ignition protected equipment unless it has been certified to meet ignition protection requirements.

Not for sealed Lead-Acid (maintenance free), Gel, or AGM – for Flooded Lead-Acid Only

Some manufacturers of flooded lead-acid batteries recommend a charging process known as equalization for extended battery life. This process involves occasionally charging a wet lead-acid battery life at a very high voltage for a short period of time in order to completely de-sulphate each of the battery plates, essentially equalizing their voltage. The installer of the Phase Three Charger may choose to wire in this option at the time of installation.

* Factory pre-set voltages without temperature compensation option installed
G) Cooling Fan

To maximize the life of the internal components and to allow continuous operation at full rating, the Phase Three Charger employs two automatic integral cooling fans. The fans draw air through the bottom of the unit and expel it out the top to improve cooling and reduce the possibility of drawing in water drops (an optional dripshield is provided for extra protection). These fans operate whenever load and/or ambient temperature cause a rise in the heat sink temperature. Their speed automatically increases/decreases in response to load and/or ambient temperature increases/decreases. Note: Under most circumstances, the fans will be in operation when the charger is on. However, they may stop completely under no load and/or ambient temperature conditions.

Fan Replacement

If a fan(s) fails to operate when the charger is on and a load is applied, it may be in need of replacement. Replacement fans are available from NEWMAR. (Specify part number 999-1208-0. Refer to Replacement Fan with PCB connector.)

1) Disconnect the charger from the AC power source.

2) Referring to Photo 1, remove the top cover screw and the 2 panel screws as shown and carefully remove the fan panel.

3) Referring to Photo 2A & 2B, unplug the 2 fan connectors noting their orientation as shown. Note the orientation of the wires as shown in Photo 2.

4) Invert the fan panel and remove the 4 screws securing the fans as shown in Photo 3.

5) Install the new fans in the reverse order using the 4 screws and refer to Photos 2 and 3 for orientation.

6) Plug in the fan connectors to the circuit board – the notch in the fan connector faces upwards.

7) Replace the fan panel and secure it with the three mounting screws.

8) Once unit is back in service, verify that the fans are blowing air out of the unit through the vent slots in the fan panel. If the fans are drawing air into the unit through the vent slots, they are installed backwards and need to be corrected (repeating Fan Replacement Procedure).

It is important that both fans are installed correctly or the charger will not cool properly and overheat.

H) Output Ammeter

This will indicate total charging output current for all battery banks connected.
D) Power-On Indicator
This green LED will glow whenever the charger is receiving AC power.

V) Application Notes

A) Start Up

1) Before powering up your charger, check for tight electrical connections to each battery in your system. Switch off any DC loads on the batteries. Apply AC power. Observe the DC ammeter on the front panel. This meter displays the total DC output of the charger, through all banks. It will give some indication of the overall state of charge of your batteries. If the meter is reading mid-scale or higher, it is an indication that the batteries are in a relatively low state of charge. The charger, sensing this, is supplying high current to the batteries. If the meter needle is at or near the bottom of the scale the batteries are at or nearing full charge.

2) Apply a load to the charger by switching on some lights, a pump, or some other DC appliance. Observe the charger meter. It should read approximately the same as the expected current draw of the appliance. As current is demanded from the battery system, the charger will automatically increase its output in response to the increased load demand. When load current exceeds 10-20% of the charger's rated capacity, the charger will go into the absorption mode and remain there until current drops below 5-15% of capacity or until the time-out circuit cycle is complete.

Note: The Phase Three charger is self-limiting and will rarely blow an input fuse. If the input fuse should blow upon first application of power, disconnect AC power to the charger and consult the TROUBLESHOOTING section of this manual. If the input fuse does need replacing, be sure to replace it with the same type and value for continue protection. The fuse value is specified on the lower left hand of the corner of the charger panel.

B) Constant Versus Occasional Use

In general, it is recommended that the charger be left connected continuously to the AC distribution system so that it will be in operation whenever AC is available. This will maintain batteries at peak voltage and will automatically compensate for the natural self-discharge of the battery system. When a load is applied to the battery system, the charger's output will automatically increase to supply the current which would otherwise draw battery voltage down. Repeatedly allowing batteries to become completely discharged before recharging will greatly shorten their life. Leaving the charger on continuously will prevent this.

While the output regulation of the charger will minimize battery gassing and water loss, monthly checks of the electrolyte level (for wet lead acid batteries) are still strongly recommended. Some water loss is an inevitable aspect of the charging process, and maintaining the correct electrolyte level in your batteries is the most important you can do to assure their maximum performance and long life.

C) Proper Load Sizing

The Phase Three Charger is rated for continuous duty (e.g., the PT-40W can deliver up to 40 amps continuously, 24 hours a day, seven days a week). While the charger cannot be damaged by overloads that exceed this continuous rating, excessive load demands may draw battery voltage down faster than the charger can resupply it. If the battery voltage continues to drop and the output current is at maximum while the charger is in service, check to see that your average DC loads are not exceeding the charger's rated output. If they are, you may wish to consider adding another charger in parallel to provide sufficient power for your requirements. (See section III-E, Multiple Unit in Parallel Wiring.)

D) Operation with Engine

It is perfectly acceptable to allow the charger to remain on when the engine is started and while it is running. The current limit feature of the Phase Three Charger will protect against any damage due to the high current demands of the engine cranking. Output diodes will prevent any back-feed of current into the charger from the alternator while the engine runs.

As the alternator starts to charge the battery, the charger output will decrease. When the battery voltage exceeds the rated output voltage of the charger, it will shut off and stay off as long as the batteries are in this high state of charge. If the battery voltage should drop below the charger's rated output voltage, it will automatically return to service.

E) Operation as a DC Power Supply (stand alone DC Power Source)

Most battery chargers are not suitable for powering electronic devices directly, without a battery attached to the output, as the high ripple and pulsing DC output (i.e., rectified AC output) can interfere with the operation of the device. The Phase Three charger is different. It employs a circuit that produces an extremely well-filtered DC output. Therefore the charger is able to power virtually any DC powered device (within the unit’s rating) without the battery attached in-line (if, for instance, the battery must be removed for any purpose and AC is still available). All but the most sensitive DC powered electronic devices will function as normally as if powered by a battery. In addition, the current limiting circuitry enables the charger to handle the high start-up surges associated with inductive loads, such as DC motors in radar sets.

VI) TROUBLESHOOTING
<table>
<thead>
<tr>
<th>Condition</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Batteries are not coming up to full charge</td>
<td>1) Extremely discharged batteries requiring long recharge time. 2) Charger limiting its output due to overload or over temperature conditions. 3) Fan not operating properly causing charger to protect against overheating by reducing power.</td>
<td>1) Turn off all D.C. loads and allow charger 24-48 hours to recharge batteries. See section IV-B for explanation of time-out circuit. 2) Reduce D.C. load and/or determine cause of over temperature state (see section III-B, “Location”). 3) Replace fans if necessary.</td>
</tr>
<tr>
<td>B) Charger continues to charge at 3 amps or more – does not taper back into charge</td>
<td>1) D.C. load drawing current from batteries (not a problem condition). 2) Bad cell in one of the batteries to which charger is connected.</td>
<td>1) Turn off main battery switch to D.C. electrical panel or turn off all D.C. loads if you wish to confirm charger will output minimal amperage to fully charge batteries. 2) Check for shorted cell in all wet lead-acid batteries using a hydrometer. Replace battery if cell is shorted. Refer to manufacturer for testing maintenance-free batteries.</td>
</tr>
<tr>
<td>C) Charger does not charge.</td>
<td>1) Blown input fuse. 2) Charger is not receiving AC input voltage or is not receiving correct AC input voltage. 3) Charger output is not properly connected to batteries. 4) Blown output fuse. 5) Defective charger.</td>
<td>1) Replace fuse with another of correct value. Check to see if AC input select switch is in proper position. 2) Using a voltmeter, confirm AC input voltage, check input connections. Confirm AC input select switch is in correct position or correct AC connector/adapter is installed. 3) Refer to DC wiring installation diagram for proper connections to batteries. 4) Replace with another of correct value (see section III-D, "DC Output Wiring"). 5) Return for analysis/repair by servicing dealer where charger was purchased or contact NEWMAR for a Return Materials Authorization number.</td>
</tr>
<tr>
<td>D) Charger repeatedly blows input fuse with no batteries connected.</td>
<td>Internal Short.</td>
<td>Same as above.</td>
</tr>
<tr>
<td>E) Reverse polarity connection to charger has caused charger to stop charging.</td>
<td>DC Output fuse and possibly other components blown.</td>
<td>Replace output fuse with another of correct value. If fuse again blows, return to servicing dealer or contact NEWMAR for Return Materials Authorization.</td>
</tr>
<tr>
<td>F) High output voltage measured across charger output terminals.</td>
<td>1) Batteries not connected to charger. It is normal to read volt higher across any output bank when no batteries are connected. 2) Equalize time function activated.</td>
<td>1) Check for tight connection of charging leads from charger to batteries. 2) Check to verify proper installation and operation of equalize timer.</td>
</tr>
</tbody>
</table>
VII) Specifications

INPUT RANGE (ALL MODELS): 85-135/170-270V AC (via selector switch); 47-63 HZ (automatic) Derate Models, PT-24-20W and PT-40W from 560 watts @ 95V AC to 500 watts @ 85V AC

OUTPUT BANKS (ALL MODELS): 3

<table>
<thead>
<tr>
<th>Model</th>
<th>Input Amps 115/230V</th>
<th>Output Volts</th>
<th>Output Amps (Cont.)</th>
<th>Weight Lbs.</th>
<th>Weight Kgs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT-40W</td>
<td>8.5/4.3</td>
<td>12</td>
<td>40</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>PT-24-20W</td>
<td>8.5/4.3</td>
<td>24</td>
<td>20</td>
<td>5.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

OUTPUT VOLTAGES WITHOUT TEMPERATURE COMPENSATION OPTION

<table>
<thead>
<tr>
<th></th>
<th>24 VOLT MODEL</th>
<th>32 VOLT MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting</td>
<td>@ 50% load</td>
<td>@ 50% load</td>
</tr>
<tr>
<td></td>
<td>@ .1 amp load</td>
<td>@ .1 amp load</td>
</tr>
<tr>
<td>Gel-Cell</td>
<td>28.0 V D.C.</td>
<td>37.3 V D.C.</td>
</tr>
<tr>
<td></td>
<td>27.2 V D.C.</td>
<td>36.2 V D.C.</td>
</tr>
<tr>
<td>Lead Acid</td>
<td>28.4 V D.C.</td>
<td>37.8 V D.C.</td>
</tr>
<tr>
<td></td>
<td>26.8 V D.C.</td>
<td>35.7 V D.C.</td>
</tr>
</tbody>
</table>

Temperature Compensation: -5mV per cell per °C

Temperature Ratings: -40°C to + 60°C; Derate linearly from 100% @ 50°C to 75% @ 60°C

INPUT/OUTPUT FUSE VALUES:

CASE SIZE

<table>
<thead>
<tr>
<th>Inches</th>
<th>Centimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>H x W x D</td>
<td>H x W x D</td>
</tr>
<tr>
<td>13.8 x 9.8 x 5.0</td>
<td>35.0 x 24.9 x 12.7</td>
</tr>
</tbody>
</table>

Add 1.27” (3.2 cm) to height and 1.1” (2.8 cm) to depth with drip shield installed.

OUTPUT VOLTAGES
(without Temperature Compensation option installed):

TEMPERATURE COMPENSATION: - 5 mV per cell per °C

VIII) BATTERY CARE TIPS

Regular maintenance and proper care will assure you reliable service from the most depended upon and sometimes most neglected items, your batteries and battery charger. NEWMAR battery chargers are designed to keep your batteries fully charged but your batteries also need proper regular maintenance to provide a maximum life of service.

ALWAYS READ AND FOLLOW THE BATTERY MANUFACTURER’S INSTRUCTIONS

Battery Installation

Batteries must be securely mounted to prevent them from falling over when the vehicle or boat is in motion. A loose battery can do serious damage. Batteries should be mounted in a battery box to contain any acid spill. Batteries give off a certain amount of hydrogen gas when they are charging. When concentrated, this gas is highly explosive. Therefore make sure they are in an accessible place with adequate ventilation for any hydrogen gas discharge.

Cleaning Batteries

Dirt and electrolyte salts can build up on the top of your batteries. This accumulation conducts electricity stored in the battery and can cause the battery to discharge by itself. Therefore, at least twice a year, it is a good idea to disconnect the battery cables and scrub the battery with a baking soda solution. Rinse with fresh water and dry with a clean cloth.

You may wish to purchase a set of terminal post corrosion prevention rings. These are alkali-saturated felt rings that slip over the battery post to reduce corrosion. Do not apply grease to any part of the battery terminals, but you may use an occasional light spray of silicone lubricant.
then recharged) to keep them in top condition. New batteries may need to be exercised before they will be capable of their full rating.

If your batteries are not the sealed type, distilled water should be added to them whenever needed. The electrolyte should cover the plates by about 1/2", allowing a small air space at the top. Do not fill the cells up to the filler cap as this could cause the battery to sputter out electrolyte when it is being charged. Only distilled water should be used; never plain tap water. Tap water contains chemicals and elements that can alter the properties of the electrolyte, including specific gravity. Some chemicals may also create an insulating coating on the battery plates which will retard current flow.

The rate at which water is lost by the battery is dependent on several factors; battery condition, ambient temperature, battery use, charge voltage, etc. It is normal for batteries which are not maintenance-free to require topping off about once a month.

A battery’s state of charge may be monitored by checking the specific gravity or by open circuit voltage. You may use the following table to evaluate the condition of your batteries:

Battery Condition Table

<table>
<thead>
<tr>
<th>Specific Gravity Measured by Hydrometer</th>
<th>Open Circuit Voltage</th>
<th>State of Discharge @ 80° F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 Volt System</td>
<td>32 Volt System</td>
</tr>
<tr>
<td>1.265</td>
<td>12.6 or more</td>
<td>25.2 or more</td>
</tr>
<tr>
<td>1.225</td>
<td>12.4</td>
<td>24.8</td>
</tr>
<tr>
<td>1.190</td>
<td>12.2</td>
<td>24.4</td>
</tr>
<tr>
<td>1.155</td>
<td>12.0</td>
<td>24.0</td>
</tr>
<tr>
<td>1.120</td>
<td>11.7 or less</td>
<td>23.4 or less</td>
</tr>
</tbody>
</table>

*Note: Wait at least 5 minutes after charging or discharging before checking specific gravity or open circuit voltage. The battery’s voltage needs to stabilize in order to get an accurate reading.

Troubleshooting Your Battery System

If your battery will not accept or hold a charge, one of the following conditions may exist:

1. **A BAD BATTERY.** You may have a battery with an open or shorted cell, a battery without any “life” left. Check by charging the battery until all cells have a specific gravity of 1.225 or greater at 80° F. If you are unable to obtain 1.225 in each cell, replace the battery. For maintenance-free or gel-cell batteries consult the manufacturer.

2. **A BAD BATTERY CHARGER.** If the battery open circuit voltage is low and/or the hydrometer indicates your batteries are low, the battery charger should be providing current to the batteries. If it is not, check AC input and check to see that you have charging voltage on the output with no battery attached. Note: You will not get an accurate voltage reading on the output of the charger with no batteries attached. This is checked merely to ensure that you do not have an open circuit on the output.

The battery charger has a thermal cutout switch to turn the charger off if it is overheating. If you suspect this is the case, refer to the information regarding charger location in the Installation section and cooling fans in the Application Notes section.

3. **ELECTRICAL LEAKAGE.** You may have a previously unsuspected source of current drain from the battery. To check for a leakage of this sort, disconnect the battery ground cable and connect an ammeter between the negative battery post and ground. If you have a reading over .1 amp, there is a source of current drain from the batteries which must be located and removed.

IX) REFERENCE APPENDIX

- For more information about boat wiring to conform to U.S. Coast Guard regulations, write: Superintendent of Documents
 Request: 33 CFR 183 Subpart I
 Government Printing Office Washington, DC 20402

- For information about American Boat and Yacht Council recommendations for boat wiring, write to: American Boat and Yacht Council
 3069 Soloman’s Island Road
 Edgewater, MD 21037
 AC & DC systems: Section E11
 A-20: Battery Charging Devices

- For additional installation instructions, refer to: ANSI NFPA 302